1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
pub use euclid::Rect;
use rustc_hash::FxHashMap;

use crate::{
    custom_measurer::LayoutMeasurer,
    dom_adapter::{
        DOMAdapter,
        LayoutNode,
        NodeKey,
    },
    geometry::{
        Area,
        Size2D,
    },
    node::Node,
    prelude::{
        AlignAxis,
        Alignment,
        AlignmentDirection,
        AreaModel,
        DirectionMode,
        LayoutMetadata,
        Length,
        Torin,
    },
};

/// Some layout strategies require two-phase measurements
/// Example: Alignments or content-fit.
#[derive(Clone, Copy, PartialEq)]
pub enum Phase {
    Initial,
    Final,
}

pub struct MeasureContext<'a, Key, L, D>
where
    Key: NodeKey,
    L: LayoutMeasurer<Key>,
    D: DOMAdapter<Key>,
{
    pub layout: &'a mut Torin<Key>,
    pub measurer: &'a mut Option<L>,
    pub dom_adapter: &'a mut D,
    pub layout_metadata: LayoutMetadata,
}

impl<Key, L, D> MeasureContext<'_, Key, L, D>
where
    Key: NodeKey,
    L: LayoutMeasurer<Key>,
    D: DOMAdapter<Key>,
{
    /// Measure a Node.
    #[allow(clippy::too_many_arguments)]
    #[inline(always)]
    pub fn measure_node(
        &mut self,
        // ID for this Node
        node_id: Key,
        // Data of this Node
        node: &Node,
        // Area occupied by it's parent
        parent_area: &Area,
        // Area that is available to use by the children of the parent
        available_parent_area: &Area,
        // Whether to cache the measurements of this Node's children
        must_cache_children: bool,
        // Parent Node is dirty.
        parent_is_dirty: bool,
        // Current phase of measurement
        phase: Phase,
    ) -> (bool, LayoutNode) {
        // 1. If parent is dirty
        // 2. If this Node has been marked as dirty
        // 3. If there is no know cached data about this Node.
        let must_revalidate = parent_is_dirty
            || self.layout.dirty.contains(&node_id)
            || !self.layout.results.contains_key(&node_id);
        if must_revalidate {
            // Create the initial Node area size
            let mut area_size = Size2D::new(node.padding.horizontal(), node.padding.vertical());

            // Compute the width and height given the size, the minimum size, the maximum size and margins
            area_size.width = node.width.min_max(
                area_size.width,
                parent_area.size.width,
                available_parent_area.size.width,
                node.margin.left(),
                node.margin.horizontal(),
                &node.minimum_width,
                &node.maximum_width,
                self.layout_metadata.root_area.width(),
                phase,
            );
            area_size.height = node.height.min_max(
                area_size.height,
                parent_area.size.height,
                available_parent_area.size.height,
                node.margin.top(),
                node.margin.vertical(),
                &node.minimum_height,
                &node.maximum_height,
                self.layout_metadata.root_area.height(),
                phase,
            );

            // If available, run a custom layout measure function
            // This is useful when you use third-party libraries (e.g. rust-skia, cosmic-text) to measure text layouts
            // When a Node is measured by a custom measurer function the inner children will be skipped
            let (measure_inner_children, node_data) = if let Some(measurer) = self.measurer {
                let most_fitting_width = *node
                    .width
                    .most_fitting_size(&area_size.width, &available_parent_area.size.width);
                let most_fitting_height = *node
                    .height
                    .most_fitting_size(&area_size.height, &available_parent_area.size.height);

                let most_fitting_area_size = Size2D::new(most_fitting_width, most_fitting_height);
                let res = measurer.measure(node_id, node, &most_fitting_area_size);

                // Compute the width and height again using the new custom area sizes
                if let Some((custom_size, node_data)) = res {
                    if node.width.inner_sized() {
                        area_size.width = node.width.min_max(
                            custom_size.width,
                            parent_area.size.width,
                            available_parent_area.size.width,
                            node.margin.left(),
                            node.margin.horizontal(),
                            &node.minimum_width,
                            &node.maximum_width,
                            self.layout_metadata.root_area.width(),
                            phase,
                        );
                    }
                    if node.height.inner_sized() {
                        area_size.height = node.height.min_max(
                            custom_size.height,
                            parent_area.size.height,
                            available_parent_area.size.height,
                            node.margin.top(),
                            node.margin.vertical(),
                            &node.minimum_height,
                            &node.maximum_height,
                            self.layout_metadata.root_area.height(),
                            phase,
                        );
                    }

                    // Do not measure inner children
                    (false, Some(node_data))
                } else {
                    (true, None)
                }
            } else {
                (true, None)
            };

            // There is no need to measure inner children in the initial phase if this Node size
            // isn't decided by his children
            let phase_measure_inner_children = if phase == Phase::Initial {
                node.width.inner_sized() || node.height.inner_sized()
            } else {
                true
            };

            // Compute the inner size of the Node, which is basically the size inside the margins and paddings
            let inner_size = {
                let mut inner_size = area_size;

                // When having an unsized bound we set it to whatever is still available in the parent's area
                if node.width.inner_sized() {
                    inner_size.width = node.width.min_max(
                        available_parent_area.width(),
                        parent_area.size.width,
                        available_parent_area.width(),
                        node.margin.left(),
                        node.margin.horizontal(),
                        &node.minimum_width,
                        &node.maximum_width,
                        self.layout_metadata.root_area.width(),
                        phase,
                    );
                }
                if node.height.inner_sized() {
                    inner_size.height = node.height.min_max(
                        available_parent_area.height(),
                        parent_area.size.height,
                        available_parent_area.height(),
                        node.margin.top(),
                        node.margin.vertical(),
                        &node.minimum_height,
                        &node.maximum_height,
                        self.layout_metadata.root_area.height(),
                        phase,
                    );
                }
                inner_size
            };

            // Create the areas
            let area_origin =
                node.position
                    .get_origin(available_parent_area, parent_area, &area_size);
            let mut area = Rect::new(area_origin, area_size);
            let mut inner_area = Rect::new(area_origin, inner_size)
                .without_gaps(&node.padding)
                .without_gaps(&node.margin);

            let mut inner_sizes = Size2D::default();

            if measure_inner_children && phase_measure_inner_children {
                // Create an area containing the available space inside the inner area
                let mut available_area = inner_area;

                available_area.move_with_offsets(&node.offset_x, &node.offset_y);

                // Measure the layout of this Node's children
                self.measure_children(
                    &node_id,
                    node,
                    &mut available_area,
                    &mut inner_sizes,
                    must_cache_children,
                    &mut area,
                    &mut inner_area,
                    true,
                );
            }

            inner_sizes.width += node.padding.horizontal();
            inner_sizes.height += node.padding.vertical();

            let layout_node = LayoutNode {
                area,
                margin: node.margin,
                inner_area,
                data: node_data,
            };

            // In case of any layout listener, notify it with the new areas.
            if node.has_layout_references {
                if let Some(measurer) = self.measurer {
                    measurer.notify_layout_references(node_id, layout_node.area, inner_sizes);
                }
            }

            (must_cache_children, layout_node)
        } else {
            let layout_node = self.layout.get(node_id).unwrap().clone();

            let mut inner_sizes = Size2D::default();
            let mut available_area = layout_node.inner_area;
            let mut area = layout_node.area;
            let mut inner_area = layout_node.inner_area;

            available_area.move_with_offsets(&node.offset_x, &node.offset_y);

            let measure_inner_children = if let Some(measurer) = self.measurer {
                measurer.should_measure_inner_children(node_id)
            } else {
                true
            };

            if measure_inner_children {
                self.measure_children(
                    &node_id,
                    node,
                    &mut available_area,
                    &mut inner_sizes,
                    must_cache_children,
                    &mut area,
                    &mut inner_area,
                    false,
                );

                // In case of any layout listener, notify it with the new areas.
                if node.has_layout_references {
                    if let Some(measurer) = self.measurer {
                        measurer.notify_layout_references(node_id, layout_node.area, inner_sizes);
                    }
                }
            }

            (false, layout_node)
        }
    }

    /// Measure the children layouts of a Node
    #[allow(clippy::too_many_arguments)]
    #[inline(always)]
    pub fn measure_children(
        &mut self,
        parent_node_id: &Key,
        parent_node: &Node,
        // Area available inside the Node
        available_area: &mut Area,
        // Accumulated sizes in both axis in the Node
        inner_sizes: &mut Size2D,
        // Whether to cache the measurements of this Node's children
        must_cache_children: bool,
        // Parent area.
        area: &mut Area,
        // Inner area of the parent.
        inner_area: &mut Area,
        // Parent Node is dirty.
        parent_is_dirty: bool,
    ) {
        let children = self.dom_adapter.children_of(parent_node_id);

        let mut initial_phase_flex_grows = FxHashMap::default();
        let mut initial_phase_sizes = FxHashMap::default();
        let mut initial_phase_inner_sizes = Size2D::default();

        // Used to calculate the spacing and some alignments
        let (non_absolute_children_len, first_child, last_child) = if parent_node.spacing.get() > 0.
        {
            let mut last_child = None;
            let mut first_child = None;
            let len = children
                .iter()
                .filter(|child_id| {
                    let Some(child_data) = self.dom_adapter.get_node(child_id) else {
                        return false;
                    };
                    let is_stacked = !child_data.position.is_absolute();
                    if is_stacked {
                        last_child = Some(**child_id);

                        if first_child.is_none() {
                            first_child = Some(**child_id)
                        }
                    }
                    is_stacked
                })
                .count();
            (len, first_child, last_child)
        } else {
            (
                children.len(),
                children.first().cloned(),
                children.last().cloned(),
            )
        };

        let needs_initial_phase = parent_node.cross_alignment.is_not_start()
            || parent_node.main_alignment.is_not_start()
            || parent_node.content.is_fit()
            || parent_node.content.is_flex();

        let mut initial_phase_area = *area;
        let mut initial_phase_inner_area = *inner_area;
        let mut initial_phase_available_area = *available_area;

        // Initial phase: Measure the size and position of the children if the parent has a
        // non-start cross alignment, non-start main aligment of a fit-content.
        if needs_initial_phase {
            //  Measure the children
            for child_id in children.iter() {
                let Some(child_data) = self.dom_adapter.get_node(child_id) else {
                    continue;
                };

                // No need to consider this Node for a two-phasing
                // measurements as it will float on its own.
                if child_data.position.is_absolute() {
                    continue;
                }

                let is_last_child = last_child == Some(*child_id);

                let inner_area = initial_phase_inner_area;

                let (_, child_areas) = self.measure_node(
                    *child_id,
                    &child_data,
                    &inner_area,
                    &initial_phase_available_area,
                    false,
                    parent_is_dirty,
                    Phase::Initial,
                );

                // Stack this child into the parent
                Self::stack_child(
                    &mut initial_phase_available_area,
                    parent_node,
                    &child_data,
                    &mut initial_phase_area,
                    &mut initial_phase_inner_area,
                    &mut initial_phase_inner_sizes,
                    &child_areas.area,
                    is_last_child,
                    Phase::Initial,
                );

                if parent_node.cross_alignment.is_not_start()
                    || parent_node.main_alignment.is_spaced()
                {
                    initial_phase_sizes.insert(*child_id, child_areas.area.size);
                }

                if parent_node.content.is_flex() {
                    match parent_node.direction {
                        DirectionMode::Vertical => {
                            if let Some(ff) = child_data.height.flex_grow() {
                                initial_phase_flex_grows.insert(*child_id, ff);
                            }
                        }
                        DirectionMode::Horizontal => {
                            if let Some(ff) = child_data.width.flex_grow() {
                                initial_phase_flex_grows.insert(*child_id, ff);
                            }
                        }
                    }
                }
            }
        }

        let initial_available_area = *available_area;

        let flex_grows = initial_phase_flex_grows
            .values()
            .cloned()
            .reduce(|acc, v| acc + v)
            .unwrap_or_default()
            .max(Length::new(1.0));

        let flex_axis = AlignAxis::new(&parent_node.direction, AlignmentDirection::Main);

        let flex_available_width = initial_available_area.width() - initial_phase_inner_sizes.width;
        let flex_available_height =
            initial_available_area.height() - initial_phase_inner_sizes.height;

        let initial_phase_inner_sizes_with_flex =
            initial_phase_flex_grows
                .values()
                .fold(initial_phase_inner_sizes, |mut acc, f| {
                    let flex_grow_per = f.get() / flex_grows.get() * 100.;

                    match flex_axis {
                        AlignAxis::Height => {
                            let size = flex_available_height / 100. * flex_grow_per;
                            acc.height += size;
                        }
                        AlignAxis::Width => {
                            let size = flex_available_width / 100. * flex_grow_per;
                            acc.width += size;
                        }
                    }

                    acc
                });

        if needs_initial_phase {
            if parent_node.main_alignment.is_not_start() {
                // Adjust the available and inner areas of the Main axis
                Self::shrink_area_to_fit_when_unbounded(
                    available_area,
                    &initial_phase_area,
                    &mut initial_phase_inner_area,
                    parent_node,
                    AlignmentDirection::Main,
                );

                // Align the Main axis
                Self::align_content(
                    available_area,
                    &initial_phase_inner_area,
                    &initial_phase_inner_sizes_with_flex,
                    &parent_node.main_alignment,
                    &parent_node.direction,
                    AlignmentDirection::Main,
                );
            }

            if parent_node.cross_alignment.is_not_start() || parent_node.content.is_fit() {
                // Adjust the available and inner areas of the Cross axis
                Self::shrink_area_to_fit_when_unbounded(
                    available_area,
                    &initial_phase_area,
                    &mut initial_phase_inner_area,
                    parent_node,
                    AlignmentDirection::Cross,
                );
            }
        }

        let initial_available_area = *available_area;

        // Final phase: measure the children with all the axis and sizes adjusted
        for child_id in children {
            let Some(child_data) = self.dom_adapter.get_node(&child_id) else {
                continue;
            };

            let is_first_child = first_child == Some(child_id);
            let is_last_child = last_child == Some(child_id);

            let mut adapted_available_area = *available_area;

            if parent_node.content.is_flex() {
                let flex_grow = initial_phase_flex_grows.get(&child_id);

                if let Some(flex_grow) = flex_grow {
                    let flex_grow_per = flex_grow.get() / flex_grows.get() * 100.;

                    match flex_axis {
                        AlignAxis::Height => {
                            let size = flex_available_height / 100. * flex_grow_per;
                            adapted_available_area.size.height = size;
                        }
                        AlignAxis::Width => {
                            let size = flex_available_width / 100. * flex_grow_per;
                            adapted_available_area.size.width = size;
                        }
                    }
                }
            }

            // Only the stacked children will be aligned
            if parent_node.main_alignment.is_spaced() && !child_data.position.is_absolute() {
                // Align the Main axis if necessary
                Self::align_position(
                    AlignmentDirection::Main,
                    &mut adapted_available_area,
                    &initial_available_area,
                    &initial_phase_inner_sizes_with_flex,
                    &parent_node.main_alignment,
                    &parent_node.direction,
                    non_absolute_children_len,
                    is_first_child,
                );
            }

            if parent_node.cross_alignment.is_not_start() {
                let initial_phase_size = initial_phase_sizes.get(&child_id);

                if let Some(initial_phase_size) = initial_phase_size {
                    // Align the Cross axis if necessary
                    Self::align_content(
                        &mut adapted_available_area,
                        available_area,
                        initial_phase_size,
                        &parent_node.cross_alignment,
                        &parent_node.direction,
                        AlignmentDirection::Cross,
                    );
                }
            }

            // Final measurement
            let (child_revalidated, mut child_areas) = self.measure_node(
                child_id,
                &child_data,
                inner_area,
                &adapted_available_area,
                must_cache_children,
                parent_is_dirty,
                Phase::Final,
            );

            // Adjust the size of the area if needed
            child_areas.area.adjust_size(&child_data);

            // Stack this child into the parent
            if !child_data.position.is_absolute() {
                Self::stack_child(
                    available_area,
                    parent_node,
                    &child_data,
                    area,
                    inner_area,
                    inner_sizes,
                    &child_areas.area,
                    is_last_child,
                    Phase::Final,
                );
            }

            // Cache the child layout if it was mutated and children must be cached
            if child_revalidated && must_cache_children {
                // Finally cache this node areas into Torin
                self.layout.cache_node(child_id, child_areas);
            }
        }
    }

    /// Align the content of this node.
    fn align_content(
        available_area: &mut Area,
        inner_area: &Area,
        contents_size: &Size2D,
        alignment: &Alignment,
        direction: &DirectionMode,
        alignment_direction: AlignmentDirection,
    ) {
        let axis = AlignAxis::new(direction, alignment_direction);

        match axis {
            AlignAxis::Height => match alignment {
                Alignment::Center => {
                    let new_origin_y = (inner_area.height() / 2.0) - (contents_size.height / 2.0);
                    available_area.origin.y = inner_area.min_y() + new_origin_y;
                }
                Alignment::End => {
                    available_area.origin.y = inner_area.max_y() - contents_size.height;
                }
                _ => {}
            },
            AlignAxis::Width => match alignment {
                Alignment::Center => {
                    let new_origin_x = (inner_area.width() / 2.0) - (contents_size.width / 2.0);
                    available_area.origin.x = inner_area.min_x() + new_origin_x;
                }
                Alignment::End => {
                    available_area.origin.x = inner_area.max_x() - contents_size.width;
                }
                _ => {}
            },
        }
    }

    /// Align the position of this node.
    #[allow(clippy::too_many_arguments)]
    fn align_position(
        alignment_direction: AlignmentDirection,
        available_area: &mut Area,
        initial_available_area: &Area,
        inner_sizes: &Size2D,
        alignment: &Alignment,
        direction: &DirectionMode,
        siblings_len: usize,
        is_first_sibling: bool,
    ) {
        let axis = AlignAxis::new(direction, alignment_direction);

        match axis {
            AlignAxis::Height => match alignment {
                Alignment::SpaceBetween if !is_first_sibling => {
                    let all_gaps_sizes = initial_available_area.height() - inner_sizes.height;
                    let gap_size = all_gaps_sizes / (siblings_len - 1) as f32;
                    available_area.origin.y += gap_size;
                }
                Alignment::SpaceEvenly => {
                    let all_gaps_sizes = initial_available_area.height() - inner_sizes.height;
                    let gap_size = all_gaps_sizes / (siblings_len + 1) as f32;
                    available_area.origin.y += gap_size;
                }
                Alignment::SpaceAround => {
                    let all_gaps_sizes = initial_available_area.height() - inner_sizes.height;
                    let one_gap_size = all_gaps_sizes / siblings_len as f32;
                    let gap_size = if is_first_sibling {
                        one_gap_size / 2.
                    } else {
                        one_gap_size
                    };
                    available_area.origin.y += gap_size;
                }
                _ => {}
            },
            AlignAxis::Width => match alignment {
                Alignment::SpaceBetween if !is_first_sibling => {
                    let all_gaps_sizes = initial_available_area.width() - inner_sizes.width;
                    let gap_size = all_gaps_sizes / (siblings_len - 1) as f32;
                    available_area.origin.x += gap_size;
                }
                Alignment::SpaceEvenly => {
                    let all_gaps_sizes = initial_available_area.width() - inner_sizes.width;
                    let gap_size = all_gaps_sizes / (siblings_len + 1) as f32;
                    available_area.origin.x += gap_size;
                }
                Alignment::SpaceAround => {
                    let all_gaps_sizes = initial_available_area.width() - inner_sizes.width;
                    let one_gap_size = all_gaps_sizes / siblings_len as f32;
                    let gap_size = if is_first_sibling {
                        one_gap_size / 2.
                    } else {
                        one_gap_size
                    };
                    available_area.origin.x += gap_size;
                }
                _ => {}
            },
        }
    }

    /// Stack a child Node into its parent
    #[allow(clippy::too_many_arguments)]
    fn stack_child(
        available_area: &mut Area,
        parent_node: &Node,
        child_node: &Node,
        parent_area: &mut Area,
        inner_area: &mut Area,
        inner_sizes: &mut Size2D,
        child_area: &Area,
        is_last_sibiling: bool,
        phase: Phase,
    ) {
        // Only apply the spacing to elements after `i > 0` and `i < len - 1`
        let spacing = (!is_last_sibiling)
            .then_some(parent_node.spacing)
            .unwrap_or_default();

        match parent_node.direction {
            DirectionMode::Horizontal => {
                // Move the available area
                available_area.origin.x = child_area.max_x() + spacing.get();
                available_area.size.width -= child_area.size.width + spacing.get();

                inner_sizes.height = child_area.height().max(inner_sizes.height);
                inner_sizes.width += spacing.get();
                if !child_node.width.is_flex() || phase == Phase::Final {
                    inner_sizes.width += child_area.width();
                }

                // Keep the biggest height
                if parent_node.height.inner_sized() {
                    parent_area.size.height = parent_area.size.height.max(
                        child_area.size.height
                            + parent_node.padding.vertical()
                            + parent_node.margin.vertical(),
                    );
                    // Keep the inner area in sync
                    inner_area.size.height = parent_area.size.height
                        - parent_node.padding.vertical()
                        - parent_node.margin.vertical();
                }

                // Accumulate width
                if parent_node.width.inner_sized() {
                    parent_area.size.width += child_area.size.width + spacing.get();
                }
            }
            DirectionMode::Vertical => {
                // Move the available area
                available_area.origin.y = child_area.max_y() + spacing.get();
                available_area.size.height -= child_area.size.height + spacing.get();

                inner_sizes.width = child_area.width().max(inner_sizes.width);
                inner_sizes.height += spacing.get();
                if !child_node.height.is_flex() || phase == Phase::Final {
                    inner_sizes.height += child_area.height();
                }

                // Keep the biggest width
                if parent_node.width.inner_sized() {
                    parent_area.size.width = parent_area.size.width.max(
                        child_area.size.width
                            + parent_node.padding.horizontal()
                            + parent_node.margin.horizontal(),
                    );
                    // Keep the inner area in sync
                    inner_area.size.width = parent_area.size.width
                        - parent_node.padding.horizontal()
                        - parent_node.margin.horizontal();
                }

                // Accumulate height
                if parent_node.height.inner_sized() {
                    parent_area.size.height += child_area.size.height + spacing.get();
                }
            }
        }
    }

    /// Shrink the available area and inner area of a parent node when for example height is set to "auto",
    /// direction is vertical and main_alignment is set to "center" or "end" or the content is set to "fit".
    /// The intended usage is to call this after the first measurement and before the second,
    /// this way the second measurement will align the content relatively to the parent element instead
    /// of overflowing due to being aligned relatively to the upper parent element
    fn shrink_area_to_fit_when_unbounded(
        available_area: &mut Area,
        parent_area: &Area,
        inner_area: &mut Area,
        parent_node: &Node,
        alignment_direction: AlignmentDirection,
    ) {
        struct NodeData<'a> {
            pub inner_origin: &'a mut f32,
            pub inner_size: &'a mut f32,
            pub area_origin: f32,
            pub area_size: f32,
            pub one_side_padding: f32,
            pub two_sides_padding: f32,
            pub one_side_margin: f32,
            pub two_sides_margin: f32,
            pub available_size: &'a mut f32,
        }

        let axis = AlignAxis::new(&parent_node.direction, alignment_direction);
        let (is_vertical_not_start, is_horizontal_not_start) = match parent_node.direction {
            DirectionMode::Vertical => (
                parent_node.main_alignment.is_not_start(),
                parent_node.cross_alignment.is_not_start() || parent_node.content.is_fit(),
            ),
            DirectionMode::Horizontal => (
                parent_node.cross_alignment.is_not_start() || parent_node.content.is_fit(),
                parent_node.main_alignment.is_not_start(),
            ),
        };
        let NodeData {
            inner_origin,
            inner_size,
            area_origin,
            area_size,
            one_side_padding,
            two_sides_padding,
            one_side_margin,
            two_sides_margin,
            available_size,
        } = match axis {
            AlignAxis::Height if parent_node.height.inner_sized() && is_vertical_not_start => {
                NodeData {
                    inner_origin: &mut inner_area.origin.y,
                    inner_size: &mut inner_area.size.height,
                    area_origin: parent_area.origin.y,
                    area_size: parent_area.size.height,
                    one_side_padding: parent_node.padding.top(),
                    two_sides_padding: parent_node.padding.vertical(),
                    one_side_margin: parent_node.margin.top(),
                    two_sides_margin: parent_node.margin.vertical(),
                    available_size: &mut available_area.size.height,
                }
            }
            AlignAxis::Width if parent_node.width.inner_sized() && is_horizontal_not_start => {
                NodeData {
                    inner_origin: &mut inner_area.origin.x,
                    inner_size: &mut inner_area.size.width,
                    area_origin: parent_area.origin.x,
                    area_size: parent_area.size.width,
                    one_side_padding: parent_node.padding.left(),
                    two_sides_padding: parent_node.padding.horizontal(),
                    one_side_margin: parent_node.margin.left(),
                    two_sides_margin: parent_node.margin.horizontal(),
                    available_size: &mut available_area.size.width,
                }
            }
            _ => return,
        };

        // Set the origin of the inner area to the origin of the area plus the padding and margin for the given axis
        *inner_origin = area_origin + one_side_padding + one_side_margin;
        // Set the size of the inner area to the size of the area minus the padding and margin for the given axis
        *inner_size = area_size - two_sides_padding - two_sides_margin;
        // Set the same available size as the inner area for the given axis
        *available_size = *inner_size;
    }
}